MariaDB Galera and custom health probe for Azure LoadBalancer

MariaDB Galera and custom health probe for Azure LoadBalancer

My Galera set-up on Kubernetes and the Azure LoadBalancer in front of it seem to work nicely but one big TODO is to implement proper health checks. If a node is down, in maintenance or split from the network it should not be part of the LoadBalancer. The Azure LoadBalancer has support for custom HTTP probes and I wanted to write something very simple that handles the HTTP GET, opens a MySQL connection to the destination, check if it is connected to a primary. As this is about health checks the code should be small and reliable.

To improve my Go(-lang) skills I decided to write my healthcheck in Go. And it seemed like a good idea, Go has a powerful HTTP package, a SQL API package and two MySQL implementations. So the entire prototype is just about 72 lines (with comments and empty lines) and I think that qualifies as small. Prototyping the MySQL code took some iterations but in general it went quite quickly. But how reliable is it? Go introduced the nice concept of a context.Context. So any operation should be associated with a context and it should be passed as argument from one method to another. One can create a child context and associate it with a deadline (absolute time) or timeout (relative) and has a way to cancel it.

I grabbed the Context from the HTTP Request, added a timeout and called a function to do the MySQL check. Wow that was easy. Some polish to parse the parameters from the CLI and I am ready to deploy it! But let’s see how reliable it is?

I imagined the following error conditions:

  1. The destination IP is reachable but no one listening on the port. The TCP connection will fail quickly (SYN -> RST,ACK)
  2. The destination IP ends in a blackhole (no RST, ACK) received. One would have a large connect timeout
  3. The Galera node (or machine hosting it) is overloaded. While the connect succeeds the authentication or a query might stall
  4. The Galera node is split and not a master

The first and fourth error conditions are easy to test/simulate and trivial to implement properly. I then moved to the third one. My first choice was to implement an infinitely slow Galera node and did that by using nc -l 3006 to accept a TCP connection and then send nothing. I made a healthprobe and waited… and waited.. no timeout. Not after 2s as programmed in the context, not after 2min and not after.. (okay I gave up after 30 min). Pretty discouraging!

After some reading and browsing I saw an open PR to add context.Context support to the MySQL backend. I modified my import, ran go get to fetch it, go build and retested. Okay that didn’t work either. So let’s try the other MySQL implementation, again change the package imports, go get and go build and retest. I picked the wrong package name but even after picking the right package this driver failed to parse the Database URL. At that point I decided to go back to the first implementation and have a deeper look.

So while many of the SQL API methods take a Context as argument, the Open one does not. Open says it might or might not connect to the database and in case of MySQL it does connect to it. Let’s see if there is a workaround? I could spawn a Go routine and have a selective receive on the result or a timeout. While this would make it possible to respond to the HTTP request it does create two issues. First one can’t cancel Go routines and I would leak memory, but worse I might run into a connection limit of the Galera node. What about other workarounds? It seems I can play with a custom parameter for readTimeout and writeTimeout and at least limit the timeout per I/O operation. I guess it takes a bit of tuning to find good values for a busy system and let’s hope that context.Context will be used more in more places in the future.

Troubleshooting Kubernetes/Azure Storage

Troubleshooting Kubernetes/Azure Storage

In my previous posts I wrote about my set-up of MariaDB Galera on Kubernetes. Now I have some first experience with this set-up and can provide some guidance. I used an ill-fated TCP health-check that lead to MariaDB Galera blocking the originating IPv4 address from accessing the cluster due to never completing a MySQL handshake and it seems (logs are gone) that this lead to the sync between different systems breaking too.

When I woke up my entire cluster was down and didn’t recover. Some pods restarted and I run into a Azure Kubernetes bug where a Persistent Storage would be umounted but not detached. This means the storage can not be re-attached to the new pod. The Microsoft upstream project is a bit hostile but the issue is known. If you are seeing an error about the storage still being detached/attached. You can go to the portal, find the agent that has it attached and detach it by hand.

To bring the cluster back online there is a chicken/egg problem. The discovers the members of the cluster by using environment variables. If the cluster is entirely down and the first pod is starting, it will just exit as it can’t connect to the others. My first approach was to keep the other nodes down and use kubectl edit rc/galera-node-X and set replicas to 0. But then the service is still exporting the information. In the end I deleted the srv/galera-node-X and waited for the first pod to start. Once it was up I could re-create the services again.

My next steps are to add proper health checks, some monitoring and see if there is a more long term archive for the log data of a (deleted) pod.


Starting to use the Galera cluster

Starting to use the Galera cluster

In my previous post I wrote about getting a MariaDB Galera cluster  started on Kubernetes. One of my open issues was how to get my existing VM to connect to it. With Microsoft Azure the first thing is to add Network peering between the Kubernetes cluster and the normal VM network. As previously mentioned the internal IPv4 address of the Galera service is not reachable from outside and the three types of exposing a service are:

  • LoadBalancer
  • ClusterIP
  • NodePort

While the default Microsoft Azure setup already has two LoadBalancers, the kubectl expose –type=LoadBalancer command does not seem to allow me to chose which load balancer to use. So after trying this command my Galera cluster was reachable through a public IPv4 address on the standard MySQL port. While it is password protected it didn’t seem like a good idea. To change the config you can use something like kubectl edit srv/galera-cluster and change the type to another one. Then I tried the NodePort type and got the MySQL port exposed on all masters and thanks to the network peering was able to connect to them directly. Then I manually modified the already configured/created Microsoft Azure LoadBalancer for the three masters to export port 3306 and map it to the internal port. I am also doing a basic health check which checks if port 3306 can be connected to.

Now I can start using the Galera cluster from my container based deployment before migrating it fully to Kubernetes. My next step is probably to improve the health checks to only get primaries listed in the LoadBalancer and then add monitoring to it as well.